Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed in 1985 and the first commercial laser ablation systems were introduced in the mid 1990s. Since then, LA-ICP-MS has become an important analytical tool in the earth sciences. Initially, the main interest for geologists was in its ability to quantitatively determine the contents of a wide range of elements in many minerals at very low concentrations (a few ppm and below) with relatively high spatial resolution (spot diameters of typically 30–100 μm). The potential of LA-ICP-MS for rapid \emph{in situ} U–Th–Pb geochronology was already realised in the early to mid 1990s. However, the full potential of LA-ICP-MS as the low-cost alternative to ion-microprobe techniques for highly precise and accurate \emph{in situ} U–Th–Pb age dating was not realised until the relatively recent advances in laser technologies and the introduction of magnetic sectorfield ICP-MS (SF-ICP-MS) instruments. In March 2005, the Geological Survey of Denmark and Greenland (GEUS) commissioned a new laser ablation magnetic sectorfield inductively coupled plasma mass spectrometry (LA-SF-ICP-MS) facility employing a ThermoFinnigan Element2 high resolution magnetic sectorfield ICP-MS and a Merchantek New Wave 213 nm UV laser ablation system. The new GEUS LA-SF-ICP-MS facility is widely used on Survey research projects in Denmark and Greenland, as well as in collaborative research and contract projects conducted with partners from academia and industry worldwide. Here, we present examples from some of these ongoing studies that highlight the application of the new facility for advanced geochronological and trace element \emph{in situ} microanalysis of geomaterials. The application of LA-SF-ICP-MS based \emph{in situ} zircon geochronology to regional studies addressing the Archaean geology of southern West Greenland is presented by Hollis \textit{et al.} (2006, this volume).

\textbf{Zircon U–Pb geochronology using LA-SF-ICP-MS}

\textit{In situ} U–Th–Pb geochronology was developed in the mid-80s with the introduction of ion-microprobe techniques, most commonly referred to as secondary ion mass spectrometry (SIMS) and sensitive high resolution ion microprobe (SHRIMP). The advantage of \emph{in situ} U–Th–Pb geochronology over conventional chemical dating by isotope dilution thermal ionisation mass spectrometry (ID-TIMS) is the capability to analyse different domains in heterogeneous single zircons with high spatial resolution (spot diameters of typically 10–30 μm). This allows resolution of igneous and metamorphic events separated by intervals of only a few tens of million years from polychronous zircons. The disadvantages of ion-microprobe techniques are the very high purchasing and operating costs for the instrument. The rapid improvements in laser based U–Th–Pb geochronology makes it now possible to obtain \emph{in situ} U–Th–Pb geochronological data with comparable spatial resolution as well as analytical precision and accuracy at only a fraction of the costs of ion-microprobe techniques (e.g. Jackson \textit{et al.} 2004; Janoušek \textit{et al.} 2006).

\textbf{Dating of magmatic and metamorphic events}

The capabilities of LA-SF-ICP-MS for the precise and accurate U–Pb age dating of relatively young igneous zircons are demonstrated by the analysis of a population of 40 zircons extracted from a gabbro from the Coastal Cordillera at Trengenu, central southern Chile. The gabbro is believed to have been formed by regional extension during the late Triassic to early Jurassic (Charrier 1979). Three zircons proved to be too small for analysis (< 30 μm). The results for the remaining 37 zircons (Fig. 1) define a highly precise igneous concordia age of 203 ± 2 Ma (2\(\sigma\); MSWD = 1.7) and indicate a Late Triassic (Rhaetian) intrusion age of the gabbro. An even
younger igneous age of 158 ± 2 Ma was recently obtained for a zircon xenocrystal derived from a newly discovered carbonate in southern West Greenland (Steenfelt et al. 2006, this volume).

The high sensitivity of the Element2 SF-ICP-MS allows U–Pb zircon age dating with a laser spot size of 30 μm or less, depending on the Pb content of the zircons. This makes it feasible to analyse different age domains in polychronic zircons, e.g. igneous cores and metamorphic rims. For example, zircons from an orthogneiss from the Nuuk region, southern West Greenland, display characteristic textures in back-scattered electron (BSE) and cathodoluminescence (CL) pictures that are interpreted as igneous cores surrounded by rims grown during a metamorphic event (see inset in Fig. 2). The U–Pb age data of the cores suggest an emplacement of the igneous protolith at c. 3660 Ma, while the rim data indicate metamorphism close to 2700 Ma (Fig. 2).

Dating of detrital zircons

Analyses of the crystallisation ages of detrital zircons in clastic sediments are a powerful tool in sedimentary provenance analysis. Accurate and precise U–Pb ages of >100 detrital zircon grains in a sample are needed to detect all major sedimentary source components with statistical confidence (cf. Vermeesch 2004; and references therein). The relatively high costs and the limited capacities of ion microprobe techniques (c. 75 zircon age analyses per day) impose restrictions on the number of samples that can be studied. Because LA-SF-ICP-MS provides very high capacities (in excess of 300 zircon age analyses per day) without compromising accuracy and precision, it constitutes the economic method of choice for provenance studies based on detrital zircon U–Pb ages.

An example for detrital zircon age data obtained by LA-SF-ICP-MS is shown in Fig. 3, where the 207Pb/206Pb age distribution for a population of 100 zircon grains separated from a Cambrian sandstone from Torekov, southern Sweden, are shown in a combined histogram and probability density distribution (PDP) diagram. The concordance filtered zircons (dark shaded area; 90–110% concordance, defined as 100* (208Pb/235U age / 207Pb/206Pb age)) show a polymodal age distribution with a minor peak at ~1000 Ma and two major peaks at c. 1150 Ma and 1650 Ma. The presence of two older sedimentary sources (c. 2150 Ma and c. 3050 Ma) is indicated by discordant grains (lighter shaded grey areas) that most likely suffered lead loss during their petrogenetic evolution.

Figures of merit

The short and long term precision and accuracy of LA-SF-ICP-MS for U–Pb zircon age dating has been assessed using two zircon reference materials, Plesovice (with an ID-TIMS age of 338 ± 1 Ma; Aftalion et al. 1989; provided by Jan Kosler, University of Bergen) and 91500 (ID-TIMS age = 1065 ± 0.4 Ma; Wiedenbeck et al. 1995). The PL zircon is routinely analysed as unknown for quality control purposes in every analytical session in the GEUS laboratory. The results for 16 analyses of the zircon from a typical single analytical session are shown in Fig. 4A. They define a concordia age that is in excellent agreement with the ID-TIMS age reported by Aftalion et al. (1989). Long-term precision (2σ) based on 109 analyses of the Plesovice zircon by two different operators was 2%, 2.3% and 1.1% for the 206Pb/238U, 207Pb/235U and 207Pb/206Pb ratios, respectively. The widely used 91500 zircon has so far only been analysed during one analytical session. The results for all seven analyses carried out...
during this session (Fig. 4B) define a concordia age which is in excellent agreement with the ID-TIMS age reported by Wiedenbeck et al. (1995).

Trace element analysis using LA-SF-ICP-MS

Due mainly to the introduction of LA-ICP-MS techniques, the trace element signatures of individual minerals (e.g. garnet, clinopyroxene, epidote, rutile, calcite) are now frequently being used to deduce the petrogenetic evolution of magmatic rocks, unravel water–rock interactions, identify geotectonic settings and sediment sources, track down the pathways of potentially health-damaging pollutants, and to unravel the change of seasurface and atmospheric temperatures. Furthermore, LA-ICP-MS is an important tool for the characterisation of synthetically produced geomaterials.

Water–rock interaction

Fluid-mediated mass transfer during metamorphism and metasomatism is a hotly debated issue. Mobility of geochemically important trace elements during fluid flow has far-reaching implications for e.g. ore-forming processes and mass transfer during subduction. Detailed investigation of the mechanisms of element mobility during fluid–rock interaction on a grain-scale are pivotal for an understanding of the processes that lead to the characteristic element enrichments and depletions observed in nature.

In the Söndrum stone quarry in Sweden, a localised dehydration zone of 2.5 to 3 m width occurs in garnet-bearing granitic gneiss around an approximately 1 m wide pegmatoid dyke. Whole-rock chemistry suggests that the solid-state dehydration of the granitic gneiss to charnockite via low H₂O activity fluids consisting principally of CO₂ and a minor brine component was predominantly isothermal (Harlov et al. 2006). Exceptions include Y and the heavy rare earth elements (HREE), which are markedly depleted throughout the dehydration zone. In order to assess the mechanism of Y and HREE depletion, the trace element geochemistry of garnet was studied in a traverse across the dehydration zone. Garnets from the pristine, unaltered granitic gneiss are characterised by a strong negative Eu-anomaly and the steep, HREE enriched pattern typical for garnet (sample SD45-600 in Fig. 5). In contrast, garnets from within the dehydration zone show a less pronounced Eu-anomaly and are characterised by dramatic Y and HREE depletions, leading to almost flat REE pattern (sample SD9-120 in Fig. 5). This observation provides direct evidence for massive release of Y and HREE from garnets, the principal hosts of these elements in the granitic gneiss, via solid-state fluid–rock interaction which was also accompanied by dehydration of hornblende and biotite to ortho- and clinopyroxene.

Analysis of synthetic geomaterials

Another application of LA-ICP-MS is the trace element analysis of synthetic geomaterials, e.g. products of experiments carried out for petrogenetrical purposes. Since the experimentally produced mineral phases are usually very small, in situ microanalysis with high spatial resolution is needed. This was traditionally achieved by SIMS techniques. Because LA-ICP-MS analyses are much cheaper and facilities are much more accessible, LA-ICP-MS has become the method of choice for the analysis of synthetic materials.

In conclusion, LA-ICP-MS is a powerful tool for the characterisation of trace element signatures of individual minerals and for the understanding of fluid–rock interactions in natural and synthetic systems.
cients determined by SIMS and LA-SF-ICP-MS are graphi-
LA-SF-ICP-MS (at GEUS). The resulting partition coeffi-

more widely available, LA-ICP-MS is increasingly used for
The inset in Fig. 6, for example, shows a back-scattered elec-
more widely available, LA-ICP-MS is increasingly used for
The inset in Fig. 6, for example, shows a back-scattered elec-

Fig. 6. Comparison of clinopyroxene-melt trace element partition coeffi-

Table of Contents

References

Acknowledgements

Authors' addresses

LA-ICP-MS (at GEUS). The resulting partition coefficients determined by
SIMS and LA-SF-ICP-MS are in excellent agreement, clearly
demonstrating the reliability of laser ablation techniques for the
characterisation of synthetic geomatirals.

The establishment of the new LA-SF-ICP-MS facility was funded with a
grant of the Danish Ministry of Education and Technology to the
Geocenter Copenhagen (Geocentrehvieling) and financial support by
GEUS. PV thanks the DAAD for awarding a PhD scholarship.

Afikol, M., Brezes, D.R. & Yatina, S. 1990: Early Carboniferous U-Pb ra-

References

Note: The authors have provided a complete list of references at the end of the document, which includes a range of sources from various fields within geochemistry and geology. These references are crucial for understanding the scientific context and supporting the research findings presented in the text. It is important to carefully review these references to gain a comprehensive understanding of the methods and results discussed. The references include works on laser ablation techniques, geochemical modelling, and the analysis of synthetic materials, among others. The authors have also acknowledged the institutional support that enabled this research, such as grants and funding from the Danish Ministry of Education and Technology and the Geocenter Copenhagen.

Authors' addresses

1. F.J. & C.M., Geological Survey of Denmark and Greenland, Dronningensgade 10, DK 2100 Copenhagen, Denmark. Email: df@geus.dk
2. A.G., Institute of Mineralogy, Johann-Wolfgang-Goethe University, Telefonenbergstrasse 28, D-60054 Frankfurt, Germany.
4. C.K., Department of Geology, University of Lund, Sölvegatan 12, S-22362 Lund, Sweden.
5. P.V. & G.F., Institut für Angewandte Geowissenschaften, Technische Universität Berlin, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany.